Environmental Threats from Wrecks: The Point of View of the Environmental Authorities

Syke-BALEX Seminar on Wrecks as Environmental Risks: The Legal Framework

Jorma Rytkönen, Finnish Environment Institute

Contents

- Seminar Objectives and Focus
- Finnish ORV fleet
- Definition wreck here
- Environmental Impact
- SYKE's Wreck Register
- Oil Removal Operations
 - Basic tools, Surveillance, Oil removal, Operations
- Cases
- Swera
- HELCOM Submerged

Wrecks as Environmental Risks: The Legal Framework

SYKE-BALEX Seminar

Helsinki, 29 - 30 November 2017 Head Office of Finnish Environment Institute, Mechelininkatu 34 a, Big Auditorium

> #BALEXSeminar #WreckPollution

SEMINAR Objectives and Focus

- The focus is on the rights and obligations of the various parties involved in these operations in practice.
- This includes discussions on the requirements, limits and guidance placed by international law, national legislation and the national or local authorities as well as questions relating to distribution of costs and responsibilities between authorities, flag States, other owners and coastal States.
- The aim of the seminar is to shed light on the regulation of shipwrecks, highlight the existing problems, try to find solutions to them and improve the cooperation between different parties.

Henrik Rak and Peter Wetterstein (eds.)

Institute of Maritime and Commercial Law Åbo Akademi University

Pollution response preparedness 2015

Response vessels

- Oil and Chemical recovery: two vessels (TURVA excluded here)
- Oil recovery with basic personnel protection for military tasks: 2 vessels
- Oil recovery and Chemical response: 3 vessels
- 10 other oil recovery vessels

Do 228 valvontalentokone Rajavartiolaitos

Definition of "WRECK"

Courtesy: Badevanne – German destroyer "Z36"

Wrecks – risk for oil pollution ?

Courtesy: WWF

FINLAND, VTT 1999

Wreck Class	Description	pcs.	Percentage of surely identified wrecks	
I	Wreck contains, with relatively high probability, over 100 tonnes of oil or it is in some other respect similarly dangerous to the environment.	22	32 68 %	
I	Wreck may contain over 100 tonnes of oil because of the size, type or other structural feature of the vessel.	24	21 % 79 %	
Ш	Wreck may contain 10-100 tonnes of oil.	68	n.a	
0	Wreck contains less than 10 tonnes of oil.	306	n.a	

Merenkulkulaitos

Merikartoitus

KMm_Kohde_GOF6

KUVAUS MERENPOHJAN KOHTEESTA "GOF6", MEA SUUNTA, 2005

Sijainti: KKJ:ssa

3.kaistan xy-koordinaatit x = 6651480.00 y = 3442998.00 maantieteelliset koordinaatit lat = 59° 58.2832' lon = 25° 58.7618'

S2: GOF057mQ

Koko ja muoto:

Kohteen pituus on n. 67 metriä ja leveys n. 9 metriä ja korkeus n. 7-10 metriä pohjan tasosta. Kohteen muoto ilmenee tarkemmin olevista kuvista Kohte_GOF6_kuva1 ja Kohte_GOF6_kuva2.

Alueen topografia (ja morfologia):

Kohteen keulaota sijaiteee n. 42 min syvyydestä, ja peräota 61 min syvyydestä, ympäristön syvyyden vaihdellesta väillä 55-63 m valillä. Kohteen ympäristön topografia on vaihtelevaa hylyn sijaitesta jyrkähköstä, länteen viettävästä rinteestä.

Kohde_GOF6_kuva1: "Pohjamuotokartta", jossa hylky erottuu keskellä.

KMy_obj_GOF6.doc6 MKL, Merikartoitus

SYKE

18.9.2014

Kohde_GOF5_Lava2: "Pohjammuotokartia", jossa voidaan erottaa bylyn keulaosa ja periosa.

Merimuseon tietoja kohteesta:

"55. Ulf Jarl" (vedenalaislöytöjen rekisterissä kohde 2501), Porvoon edusta/talousvyöhyke

Merenkulkulaitoksen kohde GOF6

Ajoitas: 1900-luku. Ajoitaskriteeri: hylky on tannistetta tarkastassakellaksen yhteydessä. Kohdetta ei ole luokitelta muinaisjäännökseksi.

Rahtilaivan hylky, jonka pitaus on noin 67 metriä ja leveys noin 9 metriä. Korkeus pohjan tasosta 7-10 metriä. Lastruumassa on laatikkolautoja ja vaneria. Komentosillan oikealla puolella on telineillään laivavene. Aluksen potkun ja perisin ovas paikoillaan.

Hylky on löytynyt Merenkulkulaitoksen tekemässä merenpohjan kartoitaksessa vuonna 2005. Jussi Kaasisen sukeltajuryhmä teki hylylle tarkistussukelluksen heinäkuussa 2007 ottaen valokuvia ja videota. Ryhmä identifioi hylyn norjalaiseksi höyvylaiva UIF Jarliksi, joka upposi 21.9.1924 ajettuaan miinaan. Onsettomuudesta ei tullukulonuhreja. Aluksen lastina oli vaneria ja laatiikoliautoja.

KMy_obj_GOF6.doc6 MKL, Merikartoitus

Sivu 1

18.9.2014

9

Oil Removal Operation – Basic Tools

•	3	TECHNOLOGY	35
•	3.1	Underwater visualization	35
•	3.2	Water depth, temperature, current	in situ 36
•	3.3	Clearing and/or dredging	36
•	3.4	Cleaning of tank outer surface	37
•	3.5	Corrosion of the wreck	37
•	3.6	Marking penetration points to the t	ank
•	3.7	Tank specific quantity and quality of	39 of oil 40
•	3.8	Oil Removal Technology	41
•	3.9	Pumps and transfer hoses	41
•	3.10	Oil viscosity control	42
•	3.11	Operation vessel(s)	43
•	3.12	Oil storage and disposal plan	44

Deliverable 4.1

STATE OF THE ART OF THE TECHNOLOGIES AND CAPABILITIES

Underwater surveillance actions

- Diver, camera, visual, testing
- ROV
- Autonomous Oceanographic Vehicles (AOV)
- AUVs; Gliders, autonomous surface vehicles (ASVs)
- fluorometer (Fluoresence detection FLD)
- masspectrometer
- Ships/Ferrybox systems
- Smart buyos with sensors
- Side scan sonars
- 3D visualizing equipments
- Radioactive means etc...

Desicion Making Procedure – Oil Removal

- Water depth as a key parameter affecting on the decision making
- Nationality, type, size and structure of the wreck
- Condition/corrosion of the wreck
- Water depth, temperature and current
- Need for clearing and/or dredging
- Hull/Tank specific amount of oil
- Hull/Tank specific oil quality
- Previous oil spills/leakages
- Sensitivity of the area
- Stability of the seabed/hydrodynamic force
- Explosives around/near the wreck

Oil Removal Operation

- Marking penetration points to the hulls
- Risk analysis, safety and security
- Occupational healthy plan
- Underwater visualization
- Oil removal plans
- Operation organization
- Oil removal
- Time schedule
- Operation vessel(s)
- Underwater working plan
- Diving
- Remotely Operated Vehicles (ROVs)
- Autonomous Underwater vehicle (AUVs)
- Technology plan
- Oil storage and disposal plan
- Action plan in case of oil leakages Mobilization and Demobilization plan

Oil Recovery Operation's working hours 1994-2000; Oil recovery vessels Halli and Hylje total 5000 h. Finnish Navy Divers, total 1400 dives and 1200 working hours. Observation class ROV, 1700 working hours.

Brita Dan, wrecked 7.11.1964

- SYKE conducted the oil removal operation in 2003 and removed remaining heavy fuel oil of 20 tons during May-June in 2003.
- The preparatory operation and investigations were conducted in 2001 and 2002 based on the received information about detected oil leakages from the wreck.
- The operation was made from support vessels Hylje and Oili. Divers were used for drilling and investigations. ROV was also used for underwater operations.

Case; MS Estonia, 2006

SYKE; "When oil removal was accomplished on June 20, 2006 altogether 230-250 cubic meters of various oils were removed."

20

18

10

1

26

28

30 32

25

27

36 38

37 39 4

Coolaroo, grounded 27.10. 1961, sank 8.12.1961

- SYKE started the first investigations in 2001. The reason for the investigation was the expected large amount of heavy fuel oil onboard the ship
- Investigations were carried out in several years, up to 2006 annually, usually in August due to the suitable environmental conditions
- Support ships:Hylje, Halli and Mursu .
- Diving operations were performed with ROV and supporting crane operations.

Trawler Bärbel 2015

- Safety Investigation Authority's Report 8/2015
- Trawlers Bärbel and Huovari were pair trawling for Baltic herring in the Archipelago Sea on the 19th of January 2015. When loading the catch into Bärbel, it capsized at 16.40, and sank at 16.50.

Near Miss cases 2017

Main Objectives / Results

- 1.) Wreck survey selecting the primary targets (high potential for oil pollution, **New Data Base**
- 2.) Validation of the wreck model (Vraka)
- 3.) **Modification** of the existing wreck model to also include the risk assessment of different salvage operation alternatives
- 4.) **Developing innovative** technological solutions for oil removal operations,

Salvage Toolbox Development

TRE

SYKE

SELECTED SWEDISH REFERENCES /CHALMERS

Pre-study of ship wreck assessment and remediation

THE ALLIANCE FOR GLOBAL SUSTAINABILITY GÖTEBORG 2007

Korrosion på skeppsvra svenska vatten

Utfordare: Utfordar Rythman-Sahter 48 Tantas or: 88 - 614 1719 8-Post of samder@sames.se Sahuri: 2011-01-02

Di referenzi Bytalic Djibaşteri Bengi Roc Lanzar Kalitariyunlar Osta Possenadori 1 601 78 kontexcorreg

Saranaa KSAAB x raharanan ammar 188221 Dit raharan ya mari 500.08-200

Gookdeed are thanks have been subscription and the

swerea KIMAB

MILJÖRISKER FRÅN FARTYGSVRAK

REGERINGSUPPDRAG 2009/4683/TR

() SJÖFARTSVERKET

2011-01-14

1

22

SWERA

SUNKEN WRECK ENVIRONMENTAL RISK ASSESSTMENT

Photo: Kaimo Vahter / Shipspotting.com

1

Deliverable 1.2

Case study of typical wreck in Estonian waters

HELCOM Expert Group on environmental risks of hazardous submerged objects

CONTENTS

- Wrecks in the Baltic Sea
- Former reports
- National activities
- International activities
- Limits and quality of information
- Introduction of wrecks into the Baltic Sea
- Areas of concern
- Hazards related to fuel and cargo oils
- Other hazards related to wrecks

G

maps.helcom.fi/website/mapservice/index.html

Baltic Sea data and

HELCOM data and map service

HELCOM map and data service

+

HELCOM data can be used freely for non-commercial purposes. Users are requested to cite HELCOM as the data source when using downloaded datasets in publications. Use conditions are data layer specific and included in the metadata file of each layer. Note that some datasets in the map and data service are hosted and owned by other organisations. In that case the data is not downloadable from this service. See service description in the layer list for more information.

500 km

Description in a second sec

Proposal: New joint wreck portal between authorities and wreck divers ?

- Benefits:
- Data source
- Observations both directions
- Warnings
- Tips
- Advice
- Lessons learned
- Networking
- Events: workshops, seminars, full-scale diving events ?

Range of occurrence of contamination with the heavy fuel flowing out of the s/s "Stuttgart" wreck – state for 2012

More Information

jorma.rytkonen@ymparisto.fi

Coast Guard's TURVA is one of the Finnish ORV's also suitable for diving operations

